I am quite new to both python and machine learning and I am trying to create an ANN for a binary classification model in order to determine whether something is faulty or not. When I run the code down below, the cost function seem to come up as nan. Unfortunately, in order to come up with an accuracy percentage, I need the cost to be an actual number. Is there an obvious error in my code or is there another way to circumvent this problem by writing it differently? Any help will be much appreciated.
Thanks.
import csv
import tensorflow as tf
import numpy as np
import pandas as pd
import urllib.request as request
import matplotlib.pyplot as plt
train_data = pd.read_csv("C:/Python35/train_data.csv", sep=',', header = None)
test_data = pd.read_csv("C:/Python35/test_data.csv", sep=',', header = None)
X_train = np.asarray(train_data)
X_test = np.asarray(test_data)
train_label = pd.read_csv("C:/Python35/train_label.csv", sep=',', header = None)
test_label = pd.read_csv("C:/Python35/test_label.csv", sep=',', header = None)
y_train = np.asarray(train_label)
y_test = np.asarray(test_label)
labels_train = (np.arange(2) == y_train[:,None]).astype(np.float32)
labels_test = (np.arange(2) == y_test[:,None]).astype(np.float32)
inputs = tf.placeholder(tf.float32, shape=(None, X_train.shape[1]), name='inputs')
label = tf.placeholder(tf.float32, shape=(None, 2), name='labels')
hid1_size = 128
w1 = tf.Variable(tf.random_normal([hid1_size, X_train.shape[1]], stddev=0.01), name='w1')
b1 = tf.Variable(tf.constant(0.1, shape=(hid1_size, 1)), name='b1')
y1 = tf.nn.dropout(tf.nn.relu(tf.add(tf.matmul(w1, tf.transpose(inputs)), b1)), keep_prob=0.5)
hid2_size = 256
w2 = tf.Variable(tf.random_normal([hid2_size, hid1_size], stddev=0.01), name='w2')
b2 = tf.Variable(tf.constant(0.1, shape=(hid2_size, 1)), name='b2')
y2 = tf.nn.dropout(tf.nn.relu(tf.add(tf.matmul(w2, y1), b2)), keep_prob=0.5)
wo = tf.Variable(tf.random_normal([2, hid2_size], stddev=0.01), name='wo')
bo = tf.Variable(tf.random_normal([2, 1]), name='bo')
yo = tf.transpose(tf.add(tf.matmul(wo, y2), bo))
lr = tf.placeholder(tf.float32, shape=(), name='learning_rate')
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=yo, labels=label))
optimizer = tf.train.GradientDescentOptimizer(lr).minimize(loss)
pred = tf.nn.softmax(yo)
pred_label = tf.argmax(pred, 1)
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(label, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
init = tf.global_variables_initializer()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.InteractiveSession(config=config)
sess.run(init)
for learning_rate in [0.05, 0.01]:
for epoch in range(50):
avg_cost = 0.0
for i in range(X_train.shape[0]):
_, c = sess.run([optimizer, loss], feed_dict={lr:learning_rate,
inputs: X_train[i, None],
label: labels_train[i, None].reshape(-1,2)})
avg_cost += c
avg_cost /= X_train.shape[0]
if epoch % 10 == 0:
print("Epoch: {:3d} Train Cost: {:.4f}".format(epoch, avg_cost))
acc_train = accuracy.eval(feed_dict={inputs: X_train, label: labels_train.reshape(-1,2)})
print("Train accuracy: {:3.2f}%".format(acc_train*100.0))
acc_test = accuracy.eval(feed_dict={inputs: X_test, label: labels_test.reshape(-1,2)})
print("Test accuracy: {:3.2f}%".format(acc_test*100.0))
0 Answer(s)