The above example is taken from book Algorithms Design and Applications by Michael T. GoodRich (page number 336 to 338 in text book and in pdf it's from 354 to 356, section 12.4.2)
http://canvas.projekti.info/ebooks/Algorithm%20Design%20and%20Applications%5BA4%5D.pdf
The code below is what I've written :
#include <stdio.h>
#include <stdlib.h>
#include<time.h>
float fball(int k, int d, int n1);
int main()
{
srand(time(NULL));
int n1,k=0,d=0;
float f;
printf("\nEnter the number of possessions : \n");
scanf("%d",&n1);
f=fball(k,d,n1);
return 0;
}
float fball(int k, int d, int n1)
{
int n=0,i,randomextra;
int rva0,rva3,rva6,rvb0,rvb3,rvb6; //probabilities of each team after
scoring fieldgoal or touchdown or no score
float p1a,p2a,p1b,p2b; //probabilities of each team for success of
scoring 1 or points after a touchdown
int myArray[3] = {0,3,6};
int randomIndex;
int randomValue;
for(n=n1;n>0;n--)
{
if(n%2==0)//alternate chance for teams
{
randomIndex= rand() % 3;
randomValue= myArray[randomIndex];
if(randomValue==0) //if no score
{
k+=randomValue;
d+=randomValue;
rva0++;
}
else if(randomValue==3) //if field goal
{
k+=randomValue;
d+=randomValue; rva3++;
}
else //if touchdown
{
randomextra=rand() % 2 + 1;
if(randomextra==1){ //if 1 point
p1a=p1a*(((rvb6/100)*fball(6,d-5,n-1))+((rvb3/100)*fball(3,d-2,n-1))+((rvb0/100)*fball(0,d+1,n-1)))+(1-p1a)*(((rvb6/100)*fball(6,d-6,n-1))+((rvb3/100)*fball(3,d-3,n-1))+((rvb0/100)*fball(0,d,n-1)));
}
else{ //if 2 point
p2a=p2a*(((rvb6/100)*fball(6,d-5,n-1))+((rvb3/100)*fball(3,d-2,n-1))+((rvb0/100)*fball(0,d+1,n-1)))+(1-p2a)*(((rvb6/100)*fball(6,d-6,n-1))+((rvb3/100)*fball(3,d-3,n-1))+((rvb0/100)*fball(0,d,n-1)));
}
rva6++;
}
}
else //chance of team B
{
randomIndex= rand() % 3;
randomValue= myArray[randomIndex];
if(randomValue==0) //if no score
{
k+=randomValue;
d-=randomValue; rvb0++;
}
else if(randomValue==3) //if field goal
{
k+=randomValue;
d-=randomValue; rvb3++;
}
else //if touchdown
{
randomextra=rand() % 2 + 1;
if(randomextra==1){ //if 1 point
p1b=p1b*(((rva6/100)*fball(6,d-5,n-1))+((rva3/100)*fball(3,d-2,n-1))+((rva0/100)*fball(0,d+1,n-1)))+(1-p1b)*(((rva6/100)*fball(6,d-6,n-1))+((rva3/100)*fball(3,d-3,n-1))+((rva0/100)*fball(0,d,n-1)));
}
else{ //if 2 point
p2b=p2b*(((rva6/100)*fball(6,d-4,n-1))+((rva3/100)*fball(3,d-1,n-1))+((rva0/100)*fball(0,d+2,n-1)))+(1-p1b)*(((rva6/100)*fball(6,d-6,n-1))+((rva3/100)*fball(3,d-3,n-1))+((rva0/100)*fball(0,d,n-1)));
}
rvb6++;
}
}
}
printf("\np1a=%f p2a=%f p1b=%f p2b=%f\n",p1a,p2a,p1b,p2b);
}
So my question is that where I've gone wrong in calculating the probability for team A to be success when its 1 point and 2 point score after touchdown because the output what I'm getting is very large where it should be 0.98 for 1 point and 0.40 to 0.55 for 2 point conversion?(explanation given in the above pdf link)
0 Answer(s)